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Modal Analysis of Small Frames Using  
High Order Timoshenko Beams 
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Abstract— In this paper, we consider the modal analysis of small frames. Firstly, we construct the 3D model using H8 elements and find 
the natural frequencies of the frame focusing our attention on the modes in the XY plane. Secondly, we construct the 2D model (plane 
stress model) using Q4 elements. We concluded that the results of both models are very close to each other’s. Then we formulate the 
stiffness matrix and the mass matrix of the 3-noded Timoshenko beam that is well suited for thick and short beams like in our case. Finally, 
we model the corners where the horizontal and vertical bar meet with a special matrix. The results of our new model (3-noded Timoshenko 
beam for the horizontal and vertical bars and a special element for the corners based on the Q4 elements) are very satisfying when 
performing the modal analysis. 

Index Terms— Corner element, Guyan reduction, High-order Timoshenko beam, modal analysis of frames, rigid link, shear locking, and 
short beams. 

——————————      —————————— 
Notations 

E Young’s modulus of elasticity   v  Poisson coefficient 

ρ density of the material    h height of the beam cross-section 

b width of the beam cross section   A area of the beam cross section 

I moment of inertia of the beam cross section K stiffness matrix of the element 

M mass matrix of the element   dof degree-of-freedom 

1  INTRODUCTION 
he Euler-Bernoulli beam element is the most used element 
for performing the modal analysis of beams and frames. 
This type of beam element gives an exact solution for the 

modal analysis problem given that we have long and slender 
beam. Whether the beam is clamped, pinned, or free, from any 
side, meshing it with EB elements will produce excellent 
results. However, when the beam becomes more and more 
short, i.e., when the ratio of the width of the beam to its length 
is > 0.1, the EB beam elements are no longer valid for a modal 
analysis. We must use Timoshenko beam elements for these 
cases. The 2-noded Timoshenko beam element is very much 
used in most software and analyses [1]. In the next paragraph, 
we will explain how the stiffness and mass matrix of such a 
beam element are calculated using linear simple shape 
functions. Following the same procedure, but using high-order 
shape functions, say quadratic ones, we will formulate the 
stiffness and mass matrix for this new 3-noded element that 
we will call “Timo3” element. 

2  THE REGULAR 2-NODED TIMOSHENKO BEAM 
ELEMENT 

In a Timoshenko beam theory, plane sections remain plane 
after deformation but not necessary perpendicular to the 
neutral axis. The plane section rotates by an amount, θ, equal 
to the rotation of the neutral axis, μ, minus the shear strain γ. 

The strain energy for an element of length L is [2]: 

 

𝑈 = 𝑏
2 ∫ ∫ 𝜀𝑇ℎ/2

−ℎ/2
𝐿
0 𝐸 𝜀 𝑑𝑑 𝑑𝑑 + 𝑏𝜇

2 ∫ ∫ 𝛾𝑇ℎ/2
−ℎ/2

𝐿
0 𝐺 𝛾 𝑑𝑑 𝑑𝑑  (1) 

Where, L is the length of the element, b and h are the width 
and the height of the beam respectively. µ is the correction 
factor for shear energy; generally taken 5/6 for beams with 
standard rectangular cross sections and 9/10 for circular 
section beams [3]. Many formulations of the Timoshenko beam 
exist, [4], [5], [6], and [7]. 

The degrees of freedom of this element are:  

v1: transverse displacement of the beam at the left node 

θ1: rotation of the beam section at the left node  

v2: transverse displacement of the beam at the right node 

θ2: rotation of the beam section at the right node  

In this model, v and θ are independent variables, thus they can 
be interpolated independently. By using isoparametric linear 
shape functions for both variables v and θ: 

𝑁1 =
1
2

(1− 𝜉)                    𝑁2 =
1
2

(1 + 𝜉)     

𝑣(𝜉) = [𝑁1(𝜉)    𝑁2(𝜉)][𝑣1    𝑣2 ]𝑇 

𝜃(𝜉) = [𝑁1(𝜉)   𝑁2(𝜉)][𝜃1    𝜃2 ]𝑇 

The bending strain is [8]: 

𝜅 =
𝑑𝜃
𝑑𝑑

=
𝑑𝜃
𝑑𝜉

𝑑𝜉
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The transverse shear strain is: 

𝛾 =
𝑑𝑣
𝑑𝑑

− 𝜃 = �
𝑑𝑁1
𝑑𝜉

𝑣1 +
𝑑𝑁2
𝑑𝜉

𝑣2�
𝑑𝜉
𝑑𝑑

− [𝑁1𝜃1 +𝑁2𝜃2] 

 

With  𝑑𝜉
𝑑𝑥

= 𝐿
2
,   𝑑𝑁1

𝑑𝜉
= − 1

2
 𝑑𝑁2

𝑑𝜉
= 1

2
 

We get 

𝜅 = 𝐵𝑏[𝑣1    𝜃1    𝑣2   𝜃2]𝑇 

Where 𝐵𝑏 = �0     −1
𝐿

     0   1
𝐿
 � is the bending matrix of the 

element. 

And  𝛾 = 𝐵𝑠[𝑣1    𝜃1    𝑣2   𝜃2]𝑇 

Where 𝐵𝑠 = �−1
𝐿

   𝜉−1
2

    1
𝐿

    −𝜉−1
2

  � is the shear strain matrix of the 
element? 

The virtual displacement is dv = N.[𝑑𝑣1    𝑑𝜃1    𝑑𝑣2   𝑑𝜃2]𝑇 

and the virtual strains are: 

𝑑𝜅 = 𝐵𝑏[𝑑𝑣1   𝑑𝜃1    𝑑𝑣2   𝑑𝜃2]𝑇          

𝑑𝛾 = 𝐵𝑠[𝑑𝑣1    𝑑𝜃1    𝑑𝑣2   𝑑𝜃2]𝑇 

The bending moment is  

M = Db.Bb.[𝑣1    𝜃1    𝑣2   𝜃2]𝑇 where Db = E I 

And the shear force is  

V = Ds.Bs.[𝑣1    𝜃1    𝑣2   𝜃2]𝑇 where Ds = µ G A 

The bending stiffness matrix for the element is computed from: 

𝐾𝑏 = � 𝐵𝑏𝑇𝐷𝑏𝐵𝑏𝑑𝑑
Ω

 

The shear stiffness matrix: 

𝐾𝑠 = � 𝐵𝑠𝑇𝐷𝑠𝐵𝑠𝑑𝑑
Ω

 

And the consistent mass matrix is computed from: 

𝑀 = � 𝜌𝜌𝑁𝑇𝑁𝑑𝑑
Ω

 

Using natural coordinates, 

𝐾𝑏 = ∫ 𝐵𝑏𝑇𝐷𝑏𝐵𝑏
𝐿
2
𝑑𝜉1

−1   

𝐾𝑠 = ∫ 𝐵𝑠𝑇𝐷𝑠𝐵𝑠
𝐿
2
𝑑𝜉1

−1   

𝑀 = � 𝜌𝜌𝑁𝑇𝑁
𝐿
2
𝑑𝜉

1

−1
 

In order to avoid shear locking, Ks is obtained using the 
reduced integration technique (one order less than required) 
[9]. Upon integrating, we get: 

 

 

 

Kb = 

 0 0 0 0  

 0 EI/L 0 -EI/L  

 0 0 0 0  

 0 -EI/L 0 EI/L  

 

Ks = 

 µGA/L µGA/2 -µGA/L µGA/2  

 µGA/2 µGAL/4 -µGA/2 µGAL/4  

 -µGA/L -µGA/2 µGA/L -µGA/2  

 µGA/2 µGAL/4 -µGA/2 µGAL/4  

 

M = ρAL/6 

 2 0 1 0  

 0 0 0 0  

 1 0 2 0  

 0 0 0 0  

3  HIGH ORDER TIMOSHENKO BEAM ELEMENT 
(QUADRATIC) 

Let us consider the Timoshenko beam element with 3 nodes 
shown in Figure 1. 

 

Figure 1. 3-noded Timoshenko beam element 

If we use the same procedure as in the previous paragraph, 
taking 3 nodes per elements, the new Lagrange quadratic 
shape functions will be: 

𝑁1 =
1
2

(−𝜉 + 𝜉2)    𝑁2 = (1− 𝜉2)   𝑁3 =
1
2

(𝜉 + 𝜉2) 

𝑣(𝜉) = 𝑁1(𝜉)𝑣1 +𝑁2(𝜉)𝑣2 +𝑁3(𝜉)𝑣3 

𝜃(𝜉) = 𝑁1(𝜉)𝜃1 + 𝑁2(𝜉)𝜃2 +𝑁3(𝜉)𝜃3 

We get 

𝜅 = 𝐵𝑏[𝑣1    𝜃1    𝑣2   𝜃2    𝑣3   𝜃3]𝑇 

Where 𝐵𝑏 = �0  2
𝐿
�𝜉 − 1

2
�   0  −4𝜉

𝐿
  0   2

𝐿
�𝜉 + 1

2
� � is the bending 

matrix of the element. 
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And  𝛾 = 𝐵𝑠[𝑣1    𝜃1    𝑣2   𝜃2    𝑣3   𝜃3]𝑇 

Where 

𝐵𝑠 = �2
𝐿
�𝜉 − 1

2
�     1

2
(𝜉 − 𝜉2)     −4𝜉

𝐿
    𝜉2 − 1   2

𝐿
�𝜉 + 1

2
�    1

2
(−𝜉 − 𝜉2)�  

is the shear strain matrix of the element. 

Again, matrix Kb is obtained using the exact integration 
whereas Ks  is obtained using the reduced integration 
technique (one order less than required). Upon integrating, we 
get: 

Kb = 

 0 0 0 0 0 0  

 0 7 0 -8 0 1  

 0 0 0 0 0 0  

 0 -8 0 16 0 -8  

 0 0 0 0 0 0  

 0 1 0 -8 0 7  

 

Kb 
=µGA/(36L) 

 84 18L -96 24L 12 -6L  
 18L 4L2 -24L 4L2 6L -2L2  
 -96 -24L 192 0 -96 24L  
 24L 4L2 0 16 

 
-24L 4L2  

 12 6L -96 -24L 84 -18L  
 -6L -2L2 24L 4L2 -18L 4L2  

 

M  = ρAL/30 

 4 0 2 0 -1 0  

 0 0 0 0 0 0  

 2 0 16 0 2 0  

 0 0 0 0 0 0  

 -1 0 2 0 4 0  

 0 0 0 0 0 0  

4  TESTING THE 3-NODED TIMOSHENKO BEAM 
Let’s perform the modal analysis of a clamped-free beam. 

 
Figure 2. Cantilever beam 

The results of the modal analysis of this clamped-free beam are 
listed in Table 1. 

 
 

Table 1. Modal analysis of the cantilevered beam for different modelling 

Mode  
No Mode shape 

Q4 

Freq 
(Hz) 

EB     Error Timo3  Error 

1 
 32 33 3% 32 0% 

2 
 172 205 19% 177 3% 

3  254 253 0% 253 0% 

4 
 411 574 40% 429 4% 

5 
 684 760 11% 720 5% 

6  759 1125 48% 760 0% 

Average   20%  2% 

As we can see, since our beam is short (length = 5 m, width = 1 
m), the Timo3 beam element shows better performance even in 
small number of mesh elements (10). 

5  MODAL ANALYSIS OF A SMALL L-FRAME 
Let’s test the Timo3 beam element on a small L-frame clamped 
at its bottom as shown in the next figure: 

 
Figure 3. Small L-frame test 

All beams have rectangular sections (2x2 m2).  
Poisson coefficient v = 0.3; Density ρ = 7800 Kg/m3; 
Elastic modulus E = 200 GPa. 

Table 2 shows the results of the modal analysis of the L-frame 
using 2 types of meshing: the first type is the volumetric 
meshing with H8 elements and the second type is the surface 
meshing (plane stress condition) with Q4 elements. 

 

 

 

 

h=1m 

L = 5m E = 200 GPa, v = 0.3 b=1m 
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Table 2. Modal analysis of the small L-frame 

Mode 
No 

Mode 
shape (3D) 

Freq 
(Hz) 

H8 

Mode shape  
(2D) 

Freq 
(Hz) 

Q4 

1 

 

55 

 

54 

2 

 

148 

 

146 

3 

 

296 

 

294 

4 

 

455 

 

454 

5 

 

582 

 

584 

6 

 

655 

 

656 

Since the modal analysis of the Q4 model is close enough to 
the results of the H8 model, we will drop the volumetric H8 
meshing and focus our attention on the 2D meshing with Q4 
elements. In the next paragraphs, our reference model will be 
the Q4 model. 

6  MODELING THE SMALL L-FRAME USING 
TIMO3 BEAM ELEMENTS 

 
Figure 4. Modeling the test L-frame using Timo3 elements 

Let’s model our frame using regular EB beam elements or 
Timo3 beam elements and compare the results of the modal 
analysis with the reference model the Q4 model. 

Table 3 lists the results of the first six mode shapes with their 
corresponding natural frequencies for different modeling. 

Table 3. Modal analysis of the L-frame using beam elements modeling 

Mode 
No 

Mode 
shape 

Freq 
(Hz) 

Q4 
EB        Error Timo3     Error 

1 

 

54 60 11% 56 4% 

2 

 

146 151 3% 111 24% 

3 

 

294 344 17% 324 10% 

4 

 

454 639 41% 418 8% 

5 

 

584 853 46% 613 5% 

6 

 

656 1089 66% 728 11% 

Average   31%  10% 

As we can see from the previous table, the Timo3 model gives 
closer results than the EB model when compared to the results 
from the reference model the Q4 model. Still, the average error 
of the first six mode shapes of the Timo3 is 10.3% in 
comparison to the reference model the Q4 model. That shows 
that we need to make some further adjustments to our linear 
model in order to decrease that error. In the next paragraph, 
we will explain the method used that will reduce the error. 

7  MODELING THE CONNECTION 
The bars of our test L-frame are modeled using Timo3 beam 
elements, but the connection that is large in our small L-frame 
must be given special consideration. We propose a special 
element for that connection based on the utilization of Q4 
surface elements. There are many ways in the finite element 
method to connect two different element types like in [10], 
[11], and [12]. 
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Figure 5. Special treatment for the connection  

(at the corner) 

The interface between the new “64Q4condensed” element and 
the Timo3 elements (on the vertical and the horizontal bars) is 
considered a rigid link. The corner element of  
2 m width and 2 m height is meshed using 64 Q4 elements as 
shown in the next Figure. 

 

Rigid link 

Rigid link 64 (Q4) elements 

u 1 

u 2 

u 3 

u 4 

u 5 

u 6 

2 m 

2 m 

 
Figure 6. Corner modeled with 64 Q4 elements and rigid links at the 

interface 

The stiffness matrix ke(8×8) and the mass matrix Me(8×8) of 
each Q4 element are known [13]. We assemble the 64 Q4 
elements to find the global stiffness and mass matrix of the 
corner k(162×162) and M(162×162). Using static condensation 
(Guyan reduction technique), we can reduce the global 
stiffness matrices to kc(34×34) and Mc(34×34) after elimination 
of the 128 non-interface dof. The rigid link can only translate in 
2 directions and rotate in one direction thus 3 dof are needed 
at each interface. Therefore, our special element will have 6 
dof, 3 at each node. 

The reduced stiffness matrix kr(6×6) is given by: kr = LTkcL,  

Where L(34×6) is the matrix giving the values of the dof 
relative to both interfaces given by:  

L=[ 

1 0 0 0 0 0  

0 1 -4*a 0 0 0  

1 0 0 0 0 0  

0 1 -3*a 0 0 0  

1 0 0 0 0 0  

0 1 -2*a 0 0 0  

1 0 0 0 0 0  

0 1 -1*a 0 0 0  

1 0 0 0 0 0  

0 1 0 0 0 0  

1 0 0 0 0 0  

0 1 1*a 0 0 0  

1 0 0 0 0 0  

0 1 2*a 0 0 0  

1 0 0 0 0 0  

0 1 3*a 0 0 0  

0 0 0 1 0 4*b  

0 1 4*a 0 0 0  

0 0 0 1 0 3*b  

0 0 0 0 1 0  

0 0 0 1 0 2*b  

0 0 0 0 1 0  

0 0 0 1 0 1*b  

0 0 0 0 1 0  

0 0 0 1 0 0  

0 0 0 0 1 0  

0 0 0 1 0 -1*b  

0 0 0 0 1 0  

0 0 0 1 0 -2*b  

0 0 0 0 1 0  

0 0 0 1 0 -3*b  

0 0 0 0 1 0  

0 0 0 1 0 -4*b  

0 0 0 0 1 0 ]; 

Where a and b are the width and column of the corner divided 
by 8 respectively. 

Using partition matrix notation, 

krr = kk(1:34,1:34);  krc = kk(1:34,35:162); 

kcr = kk(35:162,1:34);  kcc = kk(35:162,35:162); 

kkcond = krr – krc . (kcc)-1.kcr; 

Timo3 elements 

Special element 

(64Q4condensed) 
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Therefore, we can find that k = LT.kkcond.L.  Where 
k(6×6) was found using Matlab®.  

The same procedure can be used to find the mass matrix M, 
keeping in mind that it is a function of the elementary mass 
matrix of each Q4 element and the stiffness matrix kcc [14]. 

Mrr = MM(1:34,1:34);  Mrc = MM(1:34,35:162); 

Mcr = MM(35:162,1:34);  Mcc = MM(35:162,35:162); 

MMcond = Mrr – Mrc.(kcc)-1.krcT- krc.(kcc)-1.MrcT+ krc.(kcc)-

1.Mcc.(kcc)-1.krcT; 

M=LT.MMcond.L 

For our L-frame example, a = 2/8, b = 2/8, E=2e11,  
v = 0.3, t = 2, the matrix k for the corner element 
(64Q4condensed) is 

k = [ 

   5.0708e+11   1.6119e+11  -5.9359e+10  -5.0708e+11  -
1.6119e+11  -2.8653e+11 

   1.6119e+11   5.0708e+11   2.8653e+11  -1.6119e+11  -
5.0708e+11   5.9359e+10 

  -5.9359e+10   2.8653e+11    4.062e+11   5.9359e+10  -2.8653e+11  
-6.0307e+10 

  -5.0708e+11  -1.6119e+11   5.9359e+10   5.0708e+11   
1.6119e+11   2.8653e+11 

  -1.6119e+11  -5.0708e+11  -2.8653e+11   1.6119e+11   
5.0708e+11  -5.9359e+10 

  -2.8653e+11   5.9359e+10  -6.0307e+10   2.8653e+11  -
5.9359e+10    4.062e+11  ] 

m = [ 

        10588      -2319.7        -1081       7093.5       1524.1       288.55 

      -2319.7        37625      -8288.2       3115.4       7093.5      -7805.7 

        -1081      -8288.2       7164.2      -7805.7       288.55         3108 

       7093.5       3115.4      -7805.7        37625      -2319.7      -8288.2 

       1524.1       7093.5       288.55      -2319.7        10588        -1081 

       288.55      -7805.7         3108      -8288.2        -1081       7164.2   ] 

Now that we have found the stiffness matrix k(6,6) and the 
mass matrix M(6,6) of the corner element; the 
“64Q4condensed” element with Timo3 elements for the 
horizontal and vertical bars, we can model our test L-frame 
and perform the modal analysis. 

Table 4 shows the results of the modal analysis of our test L-
frame using 64Q4condensed element at the corner and Timo3 
beam elements for the horizontal and vertical bars. 

 

 

 

 

Table 4. Modal analysis of the L-frame using improved modeling 

Mode 
No Shape 

Freq 
(Hz) 

Q4 

Timo3    
Error 

64Q4condensed   
Error 

1 

 

54 56 4% 55 2% 

2 

 

146 111 24% 150 2% 

3 

 

294 324 10% 311 6% 

4 

 

454 418 8% 473 4% 

5 
 

584 613 5% 602 3% 

6 
 

656 728 11% 700 7% 

Average   10%  4% 

The above table shows the results of the modal analysis of the 
test L-frame. By using a 64Q4condensed element at the corners 
the error of the average of the first 6 natural frequencies of the 
test L-frame was reduced from 10.3% (using only Timo3 beam 
elements for the horizontal and vertical bars) to 4.1% (using 
Timo3 beam elements for the horizontal and vertical bars but 
with a 64Q4condensed element at the corner). 

8  ANALYTICAL EXPRESSION OF THE 
STIFFNESS AND MASS MATRIX OF THE 
CORNER ELEMENT 

We know that the stiffness matrix k(6×6) and the mass matrix 
M(6×6) are both a function of: The width of the corner, the 
height of the corner, the elastic modulus E of the material at 
the corner, the Poisson coefficient v of the material at the 
corner, and the density ρ of the material at the corner. 

If we let sl = b/a = the ratio of both the height and the width of 
the corner, the expression of the stiffness matrix will be a 
function of: E, v, sl, and a only. 

We can easily show that the stiffness matrix k can be written as 
k = E. [ki] where E is the Young’s modulus of the material at 
the corner. Let’s find the expression of ki. 

If we vary v from 0.1 to 0.9 and sl from 1 to 10, and by using 
the modeling technique (the multiple nonlinear regression) we 
can find the value of each number of the stiffness matrix using 
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the function surface fitting in Matlab. For example, the value of 
k11 is: 

k11(v,sl) = p00 + p10*v + p01*sl + p20*v^2 + p11*v*sl + p02*sl^2 
+ p30*v^3 + p21*v^2*sl + p12*v*sl^2 + p03*sl^3 + p40*v^4 + 
p31*v^3*sl + p22*v^2*sl^2 + p13*v*sl^3 + p04*sl^4 + p50*v^5 + 
p41*v^4*sl + p32*v^3*sl^2 + p23*v^2*sl^3 + p14*v*sl^4 + 
p05*sl^5 

Coefficients (with 95% confidence bounds): 

p00 =  -1.317  (-1.446, -1.189)      p10 = 39.28  (38.14, 40.43)
 p01 = 0.3133  (0.2174, 0.4091) 

p20 =  -210.7  (-215.6, -205.9) p11 = -3.461  (-3.781, -3.141)
 p02 = 0.03668  (0.00061, 0.072) 

p30 =  496.4  (486.3, 506.5) p21 = 15.54  (14.89, 16.19)
 p12 = 0.01262  (-0.044, 0.069) 

p03 =  -0.00452  (-0.011, 0.0022) p40 = -529.8  (-540, -519.6)
 p31 =  -26.81  (-27.5, -26.12) 

p22 =  -0.01135  (-0.068, 0.045) p13 = -0.00116  (-0.0065, 
0.0042) p04 = 0.0003 (-0.0003, 0.0009) 

p50 =  209.7  (205.7, 213.7) p41 = 16.33  (16.02, 16.64)
 p32 = 0.0568 (0.0299, 0.0837) 

p23 =  -0.0031 (-0.0055, -0.00076) p14 = 0.0001 (-7.3e-5, 0.0003) 
 p05 = -1.07e-5 (-3.3e-5, 1.1e-5) 

Goodness of fit:  SSE: 39.05     R-square: 0.9986    Adjusted R-
square: 0.9986    RMSE: 0.07289 

For the mass matrix: 

M11(v,sl) = p00 + p10*v + p01*sl + p20*v^2 + p11*v*sl + 
p02*sl^2 + p30*v^3 + p21*v^2*sl  + p12*v*sl^2 + p03*sl^3 + 
p40*v^4 + p31*v^3*sl + p22*v^2*sl^2  + p13*v*sl^3 + p04*sl^4 
+ p50*v^5 + p41*v^4*sl + p32*v^3*sl^2 + p23*v^2*sl^3 + 
p14*v*sl^4 + p05*sl^5 

Coefficients (with 95% confidence bounds): 

p00 =  13.45  (13.41, 13.5)   p10 = -5.285  (-5.661, -4.909)  
 p01 = -0.750 (-0.781, -0.718) 

p20 =  -20.78  (-22.36, -19.21)   p11 = 0.551  (0.446, 0.656)  
 p02 = 0.4257  (0.4139, 0.4376) 

p30 = 57.59  (54.3, 60.89)   p21 = 0.1597  (-0.05333, 0.3728)  
 p12 = -0.0226 (-0.041, -0.0039) 

p03 =  -0.0478  (-0.0500, -0.0455)   p40 = -57.38  (-60.72, -54.04)  
 p31 = -3.889  (-4.115, -3.663) 

p22 = 0.3484  (0.3298, 0.367)   p13 = -0.01205  (-0.0138, -
0.0102) p04 = 0.0034 (0.0032, 0.0037) 

p50 = 21.83  (20.52, 23.15)   p41 =  2.482  (2.381, 2.584)  
 p32 = -0.02902 (-0.0378, -0.02) 

p23 = -0.016 (-0.0168, -0.0152)   p14 = 0.00089 (0.00082, 
0.00096)  p05 = -0.00011 (-1e-4, -1e-4) 

Goodness of fit:  SSE: 4.199   R-square: 1   Adjusted 
R-square: 1   RMSE: 0.0239 

The R-square value from all the regression analyses of all 
terms k ij of the stiffness matrix k and the mass matrix Mij is at 
least 0.99. Thus, the model fits very well. Using this surface 
fitting in Matlab, we were able to find the analytical expression 
of all terms of the stiffness matrix k and mass matrix M of the 
64Q4condensed element. 

After finding the analytical expression for the stiffness matrix 
and the mass matrix for the corner element, and by modeling 
the horizontal and vertical bars with Timo3 elements, let’s run 
the modal analysis on another L-frame. For example: 

 
Figure 7. New test L-frame  

Running the modal analysis again on this new test L-frame, we 
get the results shown in Table 5. 
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Table 5. Modal analysis of another test L-frame using improved modeling 

Mode 
No Shape 

Freq 
(Hz) 

Q4 
Timo3 Error 64Q4condensed   

Error 

1 

 

20 20 1% 20 2% 

2 

 

66 51 23% 68 2% 

3 

 

174 184 6% 183 5% 

4 

 

281 258 8% 297 6% 

5 
 

371 378 2% 377 2% 

6 

 

429 455 6% 453 6% 

Average   8%  4% 

 

The previous table shows again that our special modeling at 
the corner with 64Q4condensed elements gives closer results 
to the reference model (Q4 model) in modal analysis. 

9  CONCLUSION 
Replacing the 3D modeling of prismatic frames by traditional 
linear elements (Timoshenko or Euler-Bernoulli beams) leads 
to a weak simulation for the dynamical analysis. When the 
beams are thin and slender, the Euler-Bernoulli beam elements 
are well suited but they perform poorly in the case of small 
frames i.e. short beams. By using Timo3 beam elements for the 
bars and “64Q4condensed” elements at the corner, the model 
rapidly and easily converges to the exact solution even if we 
used a small number of elements. First, because our shape 
functions in the Timo3 beam element are quadratic. Second, 
the corners are modeled by a 64Q4condensed element that is 
based on the assembling and condensation of 64 Q4 elements. 

Whenever you are running a modal analysis of frames, if the 
length of beams is short with respect to the width of the cross 
section of that beam, use the quadratic Timoshenko beam 
element and give special consideration for the connection at 
the corner. The best approach is to use Timo3 beam elements 

for the horizontal and vertical bars and “64Q4condensed” 
element at the corner.  
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